Planetesimal Sizes and Mars Formation in the Magnetized Solar Nebula

Yasuhiro Hasegawa

JPL Postdoc -> JPL Scientist

(Jet Propulsion Laboratory, California Institute of Technology)

in collaboration with Ryuji Morishima (UCLA/JPL) Takaya Nozawa (NAOJ) Shigeru Wakita (NAOJ)

Hf-W Chronology for Mars Formation

Dauphas & Pourmand 2011

$$^{182}Hf \longrightarrow ^{182}W$$
 with the half life of 9 Myr

The excess of ^{182}W at Mars mantle is estimated by Martian meteorites

The optimal case is realized when Mars formation is completed at 2-4 Myrs after CAI formation

 $^{60}Fe-^{60}Ni$ Chronology also confirmed the short formation timescale Tang & Dauphas 2014

I. Mars formed quickly after CAI formation

e.g., Kobayashi & Dauphas 2013, Morishima et al 2013, Levison et al 2015

Small planetesimals (even pebbles)

High surface density : destruction/radial drift of such planetesimals

2. Mars avoided giant impacts after the nebula was gone

e.g., Raymond et al 2009, Hansen 2009, Walsh 2011

Jupiter and Saturn : remove planet-forming materials

3. The turbulent solar nebula was present at Mars formation

Our Model

Initial Conditions

- : surface density
- : magnetic fields
- : planetesimal size

Comparison with Hf-W chronology

- : Formation history
- : excess of W

Runaway growth

that survive destruction (e.g, Ormel & Okuzumi 2013)

Oligarchic growth

that meet the short formation timescale (e.g., Chambers 2006)

Flock et al 2011

Preliminary results

Minimum size of planetesimals

Maximum size of planetesimals

Larger planetesimals for higher B-fields

A wide range of planetesimals for a given surface density

Next steps & Summary

- Hf-W Chronology suggests that Mars formed quickly after CAI formation
- Take into account the effect of the nebular turbulence
- develop a semi-analytical model in which the optimal values of planetesimal size and the nebular mass are specified
- will cover the larger parameter space to find out the nebular mass
- will compare other scenarios such as the narrow ring and pebble accretion